Limit
Table of Contents
- 1. Informal Definition
- 2. How to Evaluate Limits
- 3. Rules for Evaluating Limits
- 4. Techniques for Evaluating Limits
- 5. References
1 Informal Definition
- Limit at \(a\)
- Limit at infinity
2 How to Evaluate Limits
- Evaluate \(f(x)\) around \(a\), and then investigate.
- Graph.
- The following rules.
- The following techniques.
3 Rules for Evaluating Limits
Let
- \(a\), \(A\) and \(B\) be real numbers
- \(f\) and \(g\) be functions such that \(\lim\limits_{x\to a} f(x) = A\) and \(\lim\limits_{x\to a} g(x) = B\).
Then the following rules hold.
3.1 Arithmetic Rules
- \(\lim\limits_{x\to a} [f(x) \pm g(x)] = A \pm B\)
- \(\lim\limits_{x\to a} [f(x) \cdot g(x)] = A \cdot B\)
- \(\lim\limits_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}\) if \(B\neq 0\)
3.2 Important Results
- If \(f(x) = k\) is a constant, then \(\lim\limits_{x\to a} f(x) = k\).
- If \(f(x)\) is a polynomial, then \(\lim\limits_{x\to a} f(x) = f(a)\).
- For any real number \(k\), \(\lim\limits_{x\to a} [f(x)]^k = [\lim\limits_{x\to a} f(x)]^k = A^k\), provided this limit exists.
- For any real number \(b > 0\), \(\lim\limits_{x\to a} b^{f(x)} = b^{\lim\limits_{x\to a} f(x)} = b^A\).
- For any real number \(b\) such that \(0 < b < 1\) or \(b > 1\), \(\lim\limits_{x\to a} [log_b(f(x))] = log_b [ \lim\limits_{x\to a} f(x)] = log_b A\) if \(A > 0\).
- \(\lim\limits_{x\to a} f(x) = \lim\limits_{x\to a} g(x)\) if \(f(x) = g(x)\) for all \(x\neq a\)
- \(\lim\limits_{x\to \infty} \frac{1}{x^r} = 0\) for any \(r>0\)
- \(\lim\limits_{x\to - \infty} \frac{1}{x^r} = 0\) for any \(r>0\) such that \(x^r\) is undefined. (For example, if \(n=\frac{1}{2}\), then \(x^n = \sqrt{x}\) is undefined for \(x < 0\), so there is no limit at \(-\infty\) either.)
4 Techniques for Evaluating Limits
4.1 Technique 1 : Substitution
4.1.1 Polynomial
\(\lim\limits_{x\to 2} x^3 - 3x^2 + 5x - 2 = 2^3 - 3\cdot 2^2 + 5\cdot 2 - 2 = 4\)
4.1.2 Fraction with Denominator Non-Zero
\(\lim\limits_{x\to 2} \frac{2x}{3x^3+1} = \frac{2\cdot 2}{3\cdot 2^3 + 1} = \frac{4}{25}\)
4.1.3 Square Root Function
\(\lim\limits_{x\to 2} \sqrt{x^2 + 5} = \sqrt{2^2 + 5} = 3\)
4.1.4 Exponential Function
\(\lim\limits_{x\to 2} 3^{x+1} = 3^{2 + 1} = 3^3 =27\)
4.1.5 Logarithmic Function
\(\lim\limits_{x\to 2} log_2 x^5 = log_2 2^5 = 5\)
4.2 Technique 2 : Factorization and Reduction
4.2.1 Fraction of Polynomials with Denominator Zero
\(\lim\limits_{x\to 3} \frac{2x^2 - 5x - 3}{x-3}\).
If we directly plug \(3\) into the function, we get denominator \(0\). Hence we have to factorize the numerator and then cancel some common factor.
\(\lim\limits_{x\to 3} \frac{2x^2 - 5x - 3}{x-3}\) \(= \lim\limits_{x\to 3} \frac{(2x + 1)(x-3)}{x-3}\) \(= \lim\limits_{x\to 3} 2x + 1 = 2\cdot 3 + 1 = 7\).
4.3 Technique 3 : Multiplication by Conjugate
4.3.1 Fraction Containing Square Root with Denominator Zero
\(\lim\limits_{x\to 9} \frac{\sqrt{x} - 3}{x-9}\).
If we directly plug \(3\) into the function, we get denominator \(0\). Also, neither the numerator nor the denominator can be factorzied. However, We note the numerator is a square root function. In this case, we multiply both numerator and denominator by the conjugate of the numerator (because the numerator contains square root symbol. Similary, if the denominator contains square root symbol, then we multiply by the conjugate of the denominator). The conjuate of \(\sqrt{x} - 3\) is \(\sqrt{x} + 3\), so we have
\(\lim\limits_{x\to 9} \frac{\sqrt{x} - 3}{x-9}\)
\(= \lim\limits_{x\to 9} \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{(x-9)(\sqrt{x} + 3)}\) \(= \lim\limits_{x\to 9} \frac{(\sqrt{x})^2 - 3^2}{(x-9)(\sqrt{x} + 3)}\) \(= \lim\limits_{x\to 9} \frac{x - 9}{(x-9)(\sqrt{x} + 3)}\)
\(= \lim\limits_{x\to 9} \frac{1}{\sqrt{x} + 3}\) \(= \frac{1}{6}\).
4.4 Technique 4 : Limit at Infinity of a Fraction
4.4.1 Case 1 : Limit at Infinity of a Fraction Without Square Root
Description
Suppose \(f(x) = \frac{g(x)}{h(x)}\) where
- \(g(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_p x^p\) is a polynomial of order \(p\)
- \(h(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_q x^q\) is a polynomial of order \(q\)
To find \(\lim\limits_{x\to\infty} f(x)\) or \(\lim\limits_{x\to -\infty} f(x)\), we need
- Divide both numerator and denominator by \(x^{max\{p, q\}}\) and simplify the quotients, and
- Evaluate the limit using the simplified form.
Example
\(\lim\limits_{x\to \infty} \frac{2x^2 -3x + 1}{x^2 -5}\)
\(= \lim\limits_{x\to \infty} \frac{2x^2 -3x + 1}{x^2 -5}\) \(= \lim\limits_{x\to \infty} \frac{\frac{2x^2 -3x + 1}{x^2}}{\frac{x^2 -5}{x^2}}\) \(= \lim\limits_{x\to \infty} \frac{2 - \frac{3}{x} + \frac{1}{x^2}} {1 - \frac{5}{x^2}}\)
\(= \frac{ \lim\limits_{x\to \infty} 2 - \lim\limits_{x\to \infty} \frac{3}{x} + \lim\limits_{x\to \infty} \frac{1}{x^2}} {\lim\limits_{x\to \infty} 1 - \lim\limits_{x\to \infty} \frac{5}{x^2}}\)
\(= \frac{2-0+0}{1-0}\) \(= 2\)
- Remarks : Shortcuts
- If \(p=q\), then \(\lim\limits_{x\to\infty} f(x) = \lim\limits_{x\to-\infty} f(x) = \frac{a_p}{b_q}\).
If \(p < q\), then \(\lim\limits_{x\to\infty} f(x) = \lim\limits_{x\to-\infty} f(x) = 0\).
\(\lim\limits_{x\to\infty} \frac{x^2+1}{x^3-2} = 0\)
- If \(p > q\), then
\(\lim\limits_{x\to\infty} f(x) = \infty\).
\(\lim\limits_{x\to\infty} \frac{x^3-2}{x^2+1} = \infty\)
\(\lim\limits_{x\to -\infty} f(x) =\)
- \(\infty\) if \(p-q\) is even
- \(-\infty\) if \(p-q\) is odd.
\(\lim\limits_{x\to -\infty} \frac{x^3-2}{x^2+1} = -\infty\)
\(\lim\limits_{x\to -\infty} \frac{x^4-2}{x^2+1} = \infty\)
4.4.2 Case 2 : Limit at Infinity of a Fraction With Square Root
Description
Suppose
- \(g(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_p x^p\) is a polynomial of order \(p\)
- \(h(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_q x^q\) is a polynomial of order \(q\)
Then
- If \(f(x) = \frac {\sqrt{g(x)}} {h(x)}\), then divide both numerator and denominator by \(max\{p/2, q\}\).
- If \(f(x) = \frac {g(x)} {\sqrt{h(x)}}\), then divide both numerator and denominator by \(max\{p, q/2\}\).
- If \(f(x) = \frac {\sqrt{g(x)}} {\sqrt{h(x)}}\), then divide both numerator and denominator by \(max\{p/2, q/2\}\).
Example
\(\lim\limits_{x\to \infty} \frac{\sqrt{2x^2 + 1}}{x - 5}\)
Now we can see
- \(f(x) = \frac {\sqrt{g(x)}} {h(x)}\)
- \(p = 2\)
- \(q = 1\)
- \(max\{p/2, q\} = max\{ 2/2, 1 \} = 1\)
so we divide both top and bottom by \(x^1 = x\) :
\(\lim\limits_{x\to \infty} \frac{\sqrt{2x^2 + 1}}{x - 5}\)
\(= \lim\limits_{x\to \infty} \frac{\frac{\sqrt{2x^2 + 1}}{x}}{\frac{x -5}{x}}\) \(= \lim\limits_{x\to \infty} \frac {\frac {\sqrt{2x^2 + 1}} {\sqrt{x^2}} } {\frac {x-5} {x} }\) \(= \lim\limits_{x\to \infty} \frac {\sqrt{ \frac {2x^2 + 1} {x^2} } } {1 - \frac {5} {x} }\)
\(= \lim\limits_{x\to \infty} \frac {\sqrt{ 2 + \frac{1}{x^2} } } {1 - \frac {5} {x} }\) \(= \frac {\lim\limits_{x\to \infty} \sqrt{ 2 + \frac{1}{x^2} } } {\lim\limits_{x\to \infty} 1 - \frac {5} {x} }\) \(= \frac{\sqrt{2+0}}{1-0}\)
\(= \sqrt{2}\)
Here we use \(x = \sqrt{x^2}\), which is only true for \(x\geq 0\). For \(x < 0\), \(x = -\sqrt{x^2}\) holds. Since here we are evaluating the limit at \(+\infty\), we consider only positive \(x\). If we evaluate the limit at \(-\infty\), then it should be
\(\lim\limits_{x\to -\infty} \frac{\sqrt{2x^2 + 1}}{x - 5}\)
\(= \lim\limits_{x\to -\infty} \frac{\frac{\sqrt{2x^2 + 1}}{x}}{\frac{x -5}{x}}\) \(= \lim\limits_{x\to -\infty} \frac {\frac {\sqrt{2x^2 + 1}} {-\sqrt{x^2}} } {\frac {x-5} {x} }\) \(= \lim\limits_{x\to -\infty} - \frac {\sqrt{ \frac {2x^2 + 1} {x^2} } } {1 - \frac {5} {x} }\)
\(= \lim\limits_{x\to -\infty} -\frac {\sqrt{ 2 + \frac{1}{x^2} } } {1 - \frac {5} {x} }\) \(= -\frac {\lim\limits_{x\to -\infty} \sqrt{ 2 + \frac{1}{x^2} } } {\lim\limits_{x\to -\infty} 1 - \frac {5} {x} }\) \(= -\frac{\sqrt{2+0}}{1-0}\)
\(= -\sqrt{2}\)
5 References
- Lial, M. L., Greenwell, R. N., Ritchey, N. P. (2011). Calculus with Applications (10th Edition). Boston, MA : Pearson.