Function
Table of Contents
1 Definition
A function is a rule that assigns to each element from one set (domain) exactly one element from another set (range).
- Notation : \(y = f(x)\)
- How to determine
- numerically : for each value of \(x\), is the value of \(y\) unique?
- graphically : vertical line test
- Example
- YES
- \(y = f(x) = 1\)
- \(y = f(x) = x^2 - 3 + \sqrt{x+2}\)
- NO
- \(y^2 = x\). When \(x=1, y=\pm 1\)
- YES
2 Domain
2.1 Definition
The set of all possible values of the independent variable (\(x\)) in a function is called the domain of the function.
You should always give the domain in form of set or interval.
2.2 How to determine
The domain of a polynomial function \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\) is the set of all real numbers \(\mathbb{R}\).
The domain of \(f(x) = 5x^4 + x^3 - 3x^2 + 11\) is \(\mathbb{R}\).
The domain of a fraction function \(f(x) = 1/g(x)\) is the set of all points such that the denominator is non-zero, ie, \(\{x : g(x) \neq 0\}\).
The domain of \(f(x) = \frac{1}{x-3}\) is \(\mathbb{R}\setminus\{3\}\).
The domain of a square root function \(f(x) = \sqrt{g(x)}\) is the set of all points such that the term under the square root symbol non-negative, ie, \(\{x : g(x) \geq 0\}\).
The domain of \(f(x) = \sqrt{x^2 - 9}\) is \((-\infty, -3] \cup [3,\infty)\)
The domain of a logarithmic function \(f(x) = log_a g(x), a > 0, a\neq 1\) is the set of all points such that \(g(x) > 0\), ie, \(\{x : g(x) > 0\}\)
The domain of \(f(x) = ln (x^2 - 9)\) is \((-\infty, -3) \cup (3,\infty)\)
- The domain of an exponential function \(f(x) = a^x, a > 0\) and \(a\neq 1\) is the set of all real numbers \(\mathbb{R}\).
For a composite function \((f\circ g)(x) = f(g(x))\), the domain is \(\{ \text{domain of } f(g) \text{ in term of } x \}\) \(\cap\) \(\{ \text{domain of } g \text{ in term of } x \}\).
For example, when \(f(x)=\frac{1}{x}\) and \(g(x) = ln(x)\)
- the domain of \(f(g)\) in term of \(x\) is \(\{x : g(x) \neq 0\} = \{x : ln(x) \neq 0\} = \{x : x\neq 1\}\) and
- the domain of \(g(x)\) is \(\{x : x > 0\}\), so
- the domain of \(f\circ g\) is \(\{x : x > 0\} \cap \{x : x\neq 1\} = \{x : x > 0 \text{ and } x\neq 1\}\)
3 Range
3.1 Definition
The resulting set of possible values of the dependent variable (\(y\)) is called the range.
- The range depends on the domain. For example,
- the range of \(y = x+1, x\in (1,2)\) is \((2,3)\), while
- the range of \(y = x+1, x\in (0,5)\) is \((1,6)\).
- If two functions have the same domain and the same rule, then they have the same range as well.
3.2 Example
- \(f(x) = 1\)
- \(f(x) = x^2\)
- \(f(x) = \frac{1}{x+1}\)
- \(f(x) = \frac{1}{x^2 + 1}\)
- \(f(x) = \frac{1}{(x+1)^2}\)
- \(f(x) = \sqrt{x}\)
- \(f(x) = \sqrt{x}, x\in (9, 25]\)
- \(f(x) = ln(x-1)\)
- \(f(x) = 3^x\)
4 Operations
4.1 Arithmetic
- Addition \(f(x) + g(x)\)
- Subtraction \(f(x) - g(x)\)
- Multiplication \(f(x) \cdot g(x)\)
- Division \(f(x)/g(x)\)
4.2 Composition
4.2.1 Definition
- \((f\circ g) (x) = f(g(x))\)
- \((g\circ f) (x) = g(f(x))\)
- In general, \((f\circ g) (x) \neq (g\circ f) (x)\)
4.2.2 How to find \(f\circ g\) for given \(f\) and \(g\)
- Steps
- In \(f(x)\), replace variable \(x\) with variable \(g\), and
- Then replace variable \(g\) with the expression of \(g(x)\)
- Examples
\(f(x) = 3, g(x) = 4\)
\((f\circ g) (x) = f(g(x)) = f(4) = 3\)
\(f(x) = 3, g(x) = ln(x)\)
\((f\circ g) (x) = f(g(x)) = f(ln(x)) = 3\)
\(f(x) = x^2 + 1, g(x) = \sqrt{x}\)
\((f\circ g) (x) = f(g) = g^2 + 1 = [g(x)]^2 + 1 = (\sqrt{x})^2 + 1 = x + 1, x \geq 0\)
\(f(x) = ln(\frac{x^2}{1-x}), g(x) = 4^{x+1}\)
\((f\circ g) (x) = f(g) = ln(\frac{g^2}{1-g}) = ln(\frac{[g(x)]^2}{1-g(x)}) = ln(\frac{[4^{x+1}]^2}{1-4^{x+1}})\)
\((g\circ f) (x) = g(f) = 4^{f+1} = 4^{f(x) + 1} = 4^{ln(\frac{x^2}{1-x}) + 1}\)
4.2.3 How to identify \(f\) and \(g\) for a given composition
- Steps
- Let \(f\) be the outermost function, so the composition can be written as \(f(g)\), a function of \(g\)
- Let \(g\) be all terms immediately inside \(f\), so \(g\) can be written as \(g(x)\), a function of \(x\)
- Examples
\(h(x) = ln(3x+1)\)
\(ln(\text{something})\) is the outermost function, so let \(f(g) = ln(g)\)
The whole term immediately inside \(ln()\) function is \(g(x) = 3x + 1\)
Thus \(f(x) = ln (x)\) and \(g(x)= 3x + 1\)
\(h(x) = (7x^2 + 3x - 2)^{100}\)
\((\text{something})^{100}\) is the outermost function, so let \(f(g) = g^{100}\)
The whole term immediately inside \((\cdot)^{100}\) is \(g(x) = 7x^2 + 3x - 2\)
Thus \(f(x) = x^{100}\) and \(g(x) = 7x^2 + 3x - 2\)
\(h(x) = 3(x-2)^2 + 5\)
\(3 \cdot \text{something} + 5\) is the outermost function, so let \(f(g) = 3g + 5\) and \(g(x) = (x-2)^2\)
Or, regard \(3(\text{something})^2 + 5\) as the outermost function, so \(f(g) = 3g^2 + 5\) and \(g(x) = x-2\)
Or, regard \(\text{something} + 5\) as the outermost function, so \(f(g) = g + 5\) and \(g(x) = 3(x-2)^2\)
5 Exponential Function
5.1 Definition
An exponential function with base \(a\) is defined as \(y = f(x) = a^x\) where \(a > 0\) and \(a\neq 1\)
5.2 Property
- Suppose \(a > 0\) and \(a\neq 1\). Then
- \(a^x \cdot a^y = a^{x+y}\)
- \((a^x)^y = a^{xy}\)
(exponential equation) If \(a^x = a^y\), then \(x = y\).
Example : Solve for \(x\) if \(9^x = 27\).
- \(LHS = 9^x = (3^2)^x = 3^{2x}\) and
- \(RHS = 27 = 3^3\), so
- \(LHS = RHS\) implies \(2x = 3\) and thus
- \(x=\frac{3}{2}\)
change-of-base from \(a\) to \(e\)
For any \(a > 0\), \(a^x = e^{(ln a)x}\)
6 Logarithmic Function
6.1 Defintion
If \(a > 0\) and \(a\neq 1\), then the logarithmic function of base \(a\) is defined by \(y = f(x) = log_a x\) for \(x > 0\).
6.2 Properties
- suppose \(a > 0, a\neq 1, x > 0, y > 0\), and \(r\) is any real number. Then
- \(log_a x^r = r log_a x\)
- \(log_a(xy) = log_a x + log_a y\)
- \(log_a \frac{x}{y} = log_a(x\cdot y^{-1}) = log_a x + log_a y^{-1} = log_a x - log_a y\)
- \(log_a a = 1\), and thus \(lne = 1\)
- \(log_a 1 = 0\)
- \(log_a a^r = r\)
(logarithmic equation) if \(log_a x = log_a y\), then \(x = y\)
Example : Solve for \(x\) if \(3 ln (x) = 2 ln 8\).
- \(LHS = 3ln(x) = ln(x^3)\) and
- \(RHS = 2ln8 = ln8^2 = ln 64\), so
- \(LHS=RHS\) implies \(x^3 = 64\) and thus
- \(x=4\).
change-of-base from \(a\) to \(e\)
If \(a > 0, a\neq 1, b > 0\) and \(b\neq 1\), then for any \(x > 0\), \(log_a x = \frac{log_b x}{log_b a}\).
Letting \(b=e\), then we have \(log_a x = \frac{ln(x)}{ln(a)}\).
Identity
For \(a > 0, a\neq 1\) and \(x > 0\), \(y = log_a x\) means \(a^y = x\).
Thus we have \(y = log_a a^y\) and \(x = a^{log_a x}\) (equivalently, \(y = a^{log_a y}\)). When \(a=e\), we have \[ y = ln(e^y) = e^{lny} \]
6.3 Application of Logarithmic Properties
Rewrite a Log Expression
\(ln \frac{\sqrt{x}e^x}{8x^3}\) \(= ln(\sqrt{x}e^x) - ln(8x^3)\) \(= ln(\sqrt{x}) + ln(e^x) - ln((2x)^3)\)
\(= ln(x^{1/2}) + ln(e^x) - ln((2x)^3)\) \(= \frac{1}{2} ln(x) + x ln(e) - 3 ln(2x)\)
\(= \frac{1}{2} ln(x) + x - 3 ln(2x)\)
7 References
- Lial, M. L., Greenwell, R. N., Ritchey, N. P. (2011). Calculus with Applications (10th Edition). Boston, MA : Pearson.